首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11317篇
  免费   854篇
  国内免费   1794篇
化学   13583篇
晶体学   15篇
力学   23篇
综合类   32篇
数学   5篇
物理学   307篇
  2023年   34篇
  2022年   68篇
  2021年   161篇
  2020年   332篇
  2019年   299篇
  2018年   232篇
  2017年   431篇
  2016年   507篇
  2015年   426篇
  2014年   481篇
  2013年   954篇
  2012年   678篇
  2011年   712篇
  2010年   706篇
  2009年   763篇
  2008年   882篇
  2007年   931篇
  2006年   829篇
  2005年   760篇
  2004年   745篇
  2003年   551篇
  2002年   492篇
  2001年   323篇
  2000年   174篇
  1999年   138篇
  1998年   140篇
  1997年   112篇
  1996年   110篇
  1995年   187篇
  1994年   205篇
  1993年   191篇
  1992年   152篇
  1991年   68篇
  1990年   56篇
  1989年   40篇
  1988年   32篇
  1987年   18篇
  1986年   9篇
  1985年   9篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Autonomous mechanical mass transportation for cargos on the microscale with no need of continuous external powering is of great scientific and technological interest due to their extensive applications. However, it is still challenging to create a self‐driven system applicable to diverse micromaterial transportation demands. In this work, we developed a novel autonomous conveyer gel driven by frontal polymerization (FP). The chemical wave produced in FP was stable, and self‐propagating with a constant velocity, which can be easily monitored by thermal imaging or fluorescence labeling. We investigated the influence of the initiation temperature, swelling ratio of the gel substrate, and the size of the cargos on the motion of driven behavior. Results showed that the driving velocity can be well controlled by altering the initiation temperatures of FP. The swelling ratio and the size of the cargos had a key impact on the feasibility of self‐driven behavior. In addition, powerful driven capability by FP was demonstrated by successfully transporting cargos in series, and further applied for targeted synthesis of CdS nanocrystals. The methodology developed here provides an effective way to convert chemical energy to mechanical work, and may be useful in energy conversion and utilization, mass transportation and other applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1323‐1331  相似文献   
82.
A series of thermoresponsive polypeptides bearing 1‐butyl, 1‐hexyl, or 1‐dodecyl side‐chains (i.e., 6a ‐ 6c ) were synthesized by copper‐mediated 1,3‐dipolar cycloaddition with high grafting efficiency (>95%) between side‐chain “clickable” polypeptide, namely poly(γ‐4‐(propargoxycarbonyl)benzyl‐L‐glutamate) ( 5 ) and 1‐azidoalkanes. 5 with different degree of polymerization (DP = 48–86) were prepared from triethylamine initiated ring‐opening polymerization of γ‐4‐(propargoxycarbonyl)benzyl‐L‐glutamic acid based N‐carboxyanhydride ( 4 ). 1H NMR, FTIR, and GPC results revealed the successful preparation of the resulting polypeptides. 6a ‐ 6c showed reversible UCST‐type phase behaviors in methanol, ethanol, and ethanol/water solvent mixtures depending on the polymer main‐chain length, alkyl side‐chain length, weight percentage of ethanol (fw) in the binary solvent, and so forth. FTIR analysis revealed the presence of the van der Waals interaction between the alkyl pendants of polypeptides and alkyl groups of alcoholic solvents. Variable‐temperature UV‐vis spectroscopy revealed that the UCST‐type phase transition temperature (Tpt) increased as polymer main‐chain length or concentration increased. In ethanol/water solvent mixtures, polypeptide with short alkyl pendant (i.e., 1‐butyl group) and short main‐chain length (DP = 41) showed the widest fw range and Tpts in the range of 61.0–71.1 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3425–3435  相似文献   
83.
The synthesis via copper(I)‐catalyzed azide alkyne cycloaddition (CuAAC) of three new monomer derivatives of N‐vinyl‐2‐pyrrolidone (VP) carrying cyclic pyrrolidine, piperidine, and piperazine groups and the corresponding copolymers with unmodified VP is shown. The systems bearing pyrrolidine and piperidine displayed both thermo‐ and pH‐response, which has not been reported previously for a polymer with polyvinylpyrrolidone (PVP) backbone. A broad modulation of the LCST with the copolymer composition and pH was observed in a temperature range 0–100 °C. The polymers carrying piperazine exhibited broad buffering regions and no thermosensitivity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1098–1108  相似文献   
84.
The synthesis of a monoacrylate functionalized poly(isobutylene) (PIB) macromonomer (PIBA) has been achieved by a two‐step reaction starting from a commercially available PIB. Firstly, terminal olefins (vinylidene and trisubstituted olefin) of PIB were transformed to a phenolic residue by Friedel‐Crafts alkylation followed by subsequent esterification of the phenol with acryloyl chloride, catalyzed by triethylamine. PIBA structure was confirmed by 1H‐NMR, 13C‐NMR and GPC before utilizing in the RAFT copolymerization with N,N‐dimethylacrylamide (DMA) to obtain statistical copolymers (P[(DMA‐co‐(PIBA)]). Monomer conversions were consistently higher than 85% for both DMA and PIBA as monomer feed composition was varied. Chain extension of poly(N,N‐dimethylacrylamide) with PIBA to synthesize block copolymers (P[(DMA‐b‐(PIBA)]) was also achieved with near quantitative monomer conversions (>97%). Block formation efficiency was not quantitative but purification of block copolymers was possible by selective precipitation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 634–643  相似文献   
85.
In an attempt to create a polymer brush-based platform for the systematic study for anti-biofouling surfaces, the benefits of surface initiated, visible light-mediated radical polymerization are utilized to fabricate well-defined, chemically ambiguously patterned surfaces. A variety of analytical tools are used to illustrate the precise tuning of surface chemistry and thoroughly characterize spatially well-defined, hydrophilic/hydrophobic surfaces composed of poly(ethylene glycol methacrylate) and poly(trifluoroethyl methacrylate) with chemical definition on the micron scale. Advantages of both visible light-mediated photopolymerization and traditional copper-catalyzed atom transfer radical polymerization are combined to achieve both high spatial control and expanded monomer tolerance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 253–262  相似文献   
86.
“Grafting through” polymerization represents copolymerization of free monomers in solution and polymerizable units bound to a substrate. Free polymer chains are formed initially in solution and can incorporate the surface-bound monomers, and thereby, get covalently bonded to the surface during the polymerization process. As more growing chains attach to the surface-bound monomers, an immobilized polymer layer is formed on the surface. We use a combination of computer simulation and experiments to comprehend this process for monomers bound to a flat impenetrable substrate. We concentrate specifically on addressing the effect of spatial density of the surface-bound monomers on the formation of the surface-attached polymers. We employ a lattice-based Monte Carlo model utilizing the bond fluctuation model scheme to provide molecular-level insight into the grafting process. For experimental validation, we create gradients of density of bound methacrylate units on flat silicon wafers using organosilane chemistry and carry out “grafting through” free radical polymerization initiated in bulk. We report that the proximity of the surface-bound polymerizable units promotes the “grafting through” process but prevents more free growing chains to “graft through'' the polymerizable units. The “grafting through” process is self-limiting in nature and does not affect the overall density of the surface-bound polymer layer, except in case of the highest theoretical packing density of surface-bound monomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 263–274  相似文献   
87.
88.
The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene‐block‐poly(1,3‐cyclohexadiene) (PS‐b‐PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ ?PS ≤ 0.91) was studied by transmission electron microscopy and small‐angle X‐ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD‐1,4)–shell(PCHD‐1,2) cylinders in PS matrix and three‐phase (PS, PCHD‐1,4, PCHD‐1,2) four‐layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS‐b‐PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1564–1572  相似文献   
89.
Structure–property relations of cationically polymerized epoxy thermosets with different morphologies are examined. The morphology adjustment of amorphous epoxy based copolymers and partially crystalline polymer alloys is carried out with star‐shaped poly(ε‐caprolactone) (SPCL) bearing various numbers of hydroxyl end groups. These hydroxyl groups are known for their reactivity toward epoxides following the activated monomer (AM) mechanism. For this reason, four‐armed SPCL was synthesized with four hydroxyl end groups (SPCL‐tetraol) and, in addition, with successively esterified ones down to a SPCL with four ester end groups (SPCL‐tetraester). SPCL species bearing fewer or no hydroxyl end groups segregate into needle‐like nanodomains within the epoxy networks and, if the concentration is high enough, also into crystalline domains. The stronger phase separation of SPCL‐tetraester within the epoxy network compared with SPCL‐tetraol is due to a reduction of the AM mechanism. The mechanical properties resulting from different morphologies lead to a trade‐off between higher storage moduli and Tg values in the case of the more phase separated (and partially crystalline) polymer alloys and higher strain at break in the case of the amorphous copolymers. Nevertheless, in both cases toughness is improved or at least kept on the same level as for the pure epoxy resin. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2188–2199  相似文献   
90.
Using highly soluble bromo‐functionalized reduced graphene oxide (RGBr) as a key graphene template for surface‐directing Sonogashira–Hagihara polymerization, a novel soluble poly(arylene‐ethynylene)‐grafted reduced graphene oxide, hereafter abbreviated as PAE‐g‐RGO, was prepared in situ. The entirely different electron distribution of LUMO and HOMO of PAE‐g‐RGO suggested the existence of a charge‐transfer (CT) state (PAE.?–RGO.+). The negative ΔGCS value (?2.57 eV) indicates that the occurrence of the charge separation via 1RGO* in o‐DCB is exothermic and favorable. Upon irradiation with 365 nm light, the light‐induced electron paramagnetic resonance (LEPR) spectrum of PAE‐g‐RGO showed a decrease in the spin‐state density owing to photoinduced intramolecular electron transfer events in this system. A sandwich‐type Al/PAE‐g‐RGO/ITO device showed representative bistable electrical switching behavior. The nonvolatile memory performance was attributed to the CT‐induced conductance changes, which was supported by molecular computation results and conductive atomic force microscopy (C‐AFM) images.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号